Conservative Control Systems Described by the Schrödinger Equation
نویسنده
چکیده
An important subclass of well-posed linear systems is formed by the conservative systems. A conservative system is a system for which a certain energy balance equation is satisfied both by its trajectories and those of its dual system. In Malinen et al. [10], a number of algebraic characterizations of conservative linear systems are given in terms of the operators appearing in the state space description of the system. Weiss and Tucsnak [20] identified by a detailed argument a large class of conservative linear systems described by a second order differential equation in a Hilbert space and an output equation, and they may have unbounded control and observation operators. In this paper, we give two examples of conservative linear control systems described by the linear Schrödinger equation on an n-dimensional domain with boundary control and boundary observation. These examples do not fit into the framework of [20].
منابع مشابه
Conservative Local Discontinuous Galerkin Methods for Time Dependent Schrödinger Equation
This paper presents a high order local discontinuous Galerkin time-domain method for solving time dependent Schrödinger equations. After rewriting the Schrödinger equation in terms of a first order system of equations, a numerical flux is constructed to preserve the conservative property for the density of the particle described. Numerical results for a model square potential scattering problem...
متن کاملAveraged controllability of parameter dependent conservative semigroups
We consider the problem of averaged controllability for parameter depending (either in a discrete or continuous fashion) control systems, the aim being to find a control, independent of the unknown parameters, so that the average of the states is controlled. We do it in the context of conservative models, both in an abstract setting and also analysing the specific examples of the wave and Schrö...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملStochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach
We prove well-posedness results for stochastic nonlinear Schrödinger equations with linear multiplicative Wiener noise including the non-conservative case. Our approach is different from the standard literature on stochastic nonlinear Schrödinger equations. By a rescaling transformation we reduce the stochastic equation to a random nonlinear Schrödinger equation with lower order terms and treat...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کامل